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Abstract

A new variant of the multilevel Monte Carlo estimator [5, 3, 9, 12]
is presented for the estimation of expectation statistics that utilizes
sample reuse in specified levels, explicitly removes approximation er-
ror bias associated with numerically computed output quantities of
interest that have an asymptotic limit behavior, and permits a low
variance estimate of the asymptotic rate of convergence to that limit.
In addition, it is shown that this new multilevel Monte Carlo variant
can yield a computational cost savings.

A review of Monte Carlo and multilevel Monte Carlo estimators
is presented that includes analysis of expected value, expected mean
squared error, and the calculation of optimized multilevel sample size
parameters. The multilevel Monte Carlo estimator produces estimates
of expectation for numerically approximated output quantities of in-
terest that are biased by approximation error. When the quantity
of interest can be modeled as the asymptotic limit of numerically
approximated output quantities of interest, it is theoretically possi-
ble to remove this approximation error bias in the multilevel Monte
Carlo estimator. In actual implementations, however, this procedure
is unreliable due to statistical variability and inaccuracy in estimat-
ing the needed asymptotic limit. Analysis and numerical experiment
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show that the proposed variant of the multilevel Monte Carlo method
greatly reduces (in some cases eliminates) the statistical variability in
this limit estimation.

1 Introduction

Multilevel methods, including multigrid [1, 6] and multilevel domain decom-
position methods [11, 2], have proven highly successful in drastically reducing
the algorithmic complexity associated with solving discretized systems aris-
ing from the finite-dimensional approximation of deterministic PDEs. This
improvement in algorithmic complexity has enabled the routine simulation
of complex physical systems using numerically approximated PDEs.

More recently, multilevel approaches have been developed to accelerate
the Monte Carlo (MC) sampling method originally developed by scientists
at the Los Alamos Laboratory in the 1940s. The primary application area
considered here is the Monte Carlo estimation of moment statistics for out-
put quantities of interest derived from the numerical solution of PDEs with
input sources of uncertainty. The original Monte Carlo sampling method
applied to these applications becomes extremely expensive when very small
errors in the desired moment statistics are required. To address this ineffi-
ciency, multilevel Monte Carlo estimators [5, 3, 9, 12] and multifidelity Monte
Carlo estimators [10] have been developed that permit the efficient calcula-
tion of moment statistics with very small errors for this class of problems.
These multilevel Monte Carlo estimators utilize a sequence of approximate
quantity of interest models with increasing accuracy and cost. The expec-
tation statistic is then calculated in incremental form. For example, let J
denote a quantity of interest and {J0, J1, . . . , JL} a sequence of approximate
models with increasing accuracy and evaluation cost. Linearity of the ex-
pectation functional permits writing the expectation of the high accuracy
model, E[JL], in terms of the expectation of the low accuracy model, E[J0],
(that is relatively inexpensive to estimate using MC sampling) and the sum
of incremental corrections over levels

E[JL] = E[J0] + E[J1 − J0] + · · ·+ E[JL − JL−1] (1)

that can also be estimated using MC sampling but have small variance.
Analysis shows that this strategy can yield a dramatic improvement in cost
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efficiency when compared to a single level Monte Carlo estimator. An out-
standing issue with the multilevel Monte Carlo estimators described above
is that these estimators produce expectation estimates biased by model ap-
proximation error. In the above example, E[JL] can be estimated but the
desired statistic is E[J ]. In principle, this approximation error bias can be
removed [5, 3]. Unfortunately, for the PDE related problems considered here,
the additional estimates needed for the bias correction are contaminated by
sampling variability and generally unreliable. A contribution of the present
work is a variant of the multilevel Monte Carlo estimator utilizing sample
reuse that accommodates the efficient and robust (very low variance) calcu-
lation of approximation error bias corrections.

1.1 PDEs with random variable sources of uncertainty

Let (Ω,Σ, P ) denote a probability space with event outcomes in Ω, a σ-
algebra Σ, and P the assignment of events to probabilities. Our interest lies
in the finite-dimensional approximation systems of random variable PDEs
with m dependent variables in d+1 space-time dimensions subject to random
variable sources of uncertainty. Let L denote a nonlinear PDE operator with
solution u(x, t, ω) : Rd × R+ × Ω 7→ Rm and forcing function f(x, t, ω) :
Rd × R+ × Ω 7→ Rm such that

Lu(x, t, ω) = f(x, t, ω) (2)

subject to suitable initial data and boundary conditions. The finite-dimensional
approximation of this PDE system, the subsequent calculation of derived
output quantities of interest denoted by J(u(x, t, ω)), and the estimation of
moment statistics is the motivation for this work. In fluid dynamics simula-
tions, some output quantities of interest include

• integrated forces and force moments,

• graphs of pressure, temperature, velocity on specified space-time curves,

• pressure, temperature, velocity for space-time volume subsets.

In particular, we are interested in estimators for Lebesgue measurable expec-
tation statistics of output quantities of interest

E[J ](x, t) =

∫
Ω

J(u(x, t, ω)) p(ω) dω (3)
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and variance statistics

Var[J ](x, t) =

∫
Ω

(J(u(x, t, ω))− E[J ](x, t))2 p(ω) dω

= E[J2]− E2[J ] (4)

where p(ω) is the probability density associated with P (ω), i.e., p(ω) dω =
dP (ω).

1.2 Preview of the paper

This paper considers new variants of the multilevel Monte Carlo estimator [5,
3, 9, 12] for general quantities of interest J(u(x, t, ω)). To provide additional
guidance in the development of these new estimators, the following idealized
quantity of interest is considered

Jl ≡ J(ul(x, t, ω); ∆0, γ, r, L) = p(x, t, ω) + (γ−l∆0)rq(x, t, ω) , l = 0, . . . , L
(5)

that includes a level-dependent model of PDE discretization error with mesh
resolution ∆0, enrichment factor γ, rate parameter r, a maximum level pa-
rameter L, and random variable functions p(x, t, ω) and q(x, t, ω). This mod-
els output quantities of interest derived from numerically approximated PDEs
using a sequence of L+ 1 successively refined space-time meshes. Each mesh
level is refined from the previous level by increasing the number of degrees
of freedom (e.g. mesh points) in each space-time dimension by the factor
γ. This models quantities interest that are asymptotically approaching limit
values with respect to mesh refinement.

The remainder of the paper is organized as follows:

• Section 2 reviews the Monte Carlo (MC) and multilevel Monte Carlo
(MLMC) estimators. Development of the MLMC estimator and later
variants consists of the following steps:

1. Assume a multilevel calculation of the expectation statistic in in-
cremental form (1) with right-hand-side terms estimated using
Monte Carlo estimators. There is some flexibility on how this is
done. This introduces algorithmic parameters that must be de-
termined.
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2. Calculate the expected value, expected mean squared error, and
any systematic bias associated with the estimator.

3. Determine any unknown algorithm parameters by minimizing the
expected mean squared error for a fixed algorithm cost [5, 3].
Other choices are available such as the equidistribution of error
among levels [9, 12].

4. Design an algorithmic implementation with unbiased expected
mean squared error control that accounts for any systematic bias.

The standard MLMC implementation is an incremental bootstrap al-
gorithm that incrementally adds levels while updating estimates for
optimal algorithm parameters. The algorithm terminates when the
desired level of expected mean squared error is achieved.

• Section 3 discusses multilevel Monte Carlo estimators with sample reuse
(MLMC-SR). Statistical event outcome samples are shared among lev-
els of the MLMC-SR estimator. Reusing samples increases the expected
mean squared error when compared to the MLMC estimator using the
same number of samples. On the other hand, the number of quantity of
interest samples required is reduced. This reduces the total cost, thus
allowing more samples to be taken (which lowers the mean squared er-
ror). A more compelling motivation for sample reuse is discussed below
and presented later in Sect. 4.2.

• Section 4 addresses the biased expectation statistic produced by the
MLMC estimator. When output quantities of interest are computed
from numerical PDE approximations, the statistical bias originates
from finite-dimensional approximation error associated with the nu-
merical PDE approximation. Whenever output quantities of interest,
computed from this PDE approximation, have error that decreases at
an asymptotic rate that can be estimated, the approximation error bias
can be removed from the MLMC estimator. This unbiased Monte Carlo
estimator is referred to as RMLMC. Unfortunately, the estimation of
this asymptotic rate using MLMC level information is contaminated
by statistical variability (variance) that increases the variance of the
resulting RMLMC estimator.

• Section 4.2 addresses the biased expectation statistic produced by the
MLMC-SR estimator. It is again observed that when the discretization
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error decreases at an asymptotic rate that can be estimated, the approx-
imation error bias can be removed yielding the unbiased RMLMC-SR
estimator. But unlike the RMLMC estimator, it is shown that sample
reuse can be exploited to obtain reliable asymptotic rate estimates. In
fact, when applied to the idealized quantity of interest (5), the calcu-
lation of the asymptotic rate is deterministic and exact.

• Section 5 provides cost and performance comparisons of the unbiased
RMLMC and RMLMC-SR estimators.

2 Background

A starting point is the single level Monte Carlo estimator for the expectation
statistic. This estimator is the underpinning of later multilevel estimators.

2.1 Monte Carlo (MC) estimator

Classic results for the Monte Carlo estimator are now presented. The results
are used in the development of the multilevel Monte Carlo estimator.

Definition 1 (MC Estimator) Let J(u(·, ω)) denote a random variable
quantity of interest. Let XM = {ω(1), ω(2), . . . , ω(M)} denote the set of M
independent and identically distributed (i.i.d.) event outcome samples that
satisfy a given probability law P . Let JM denote the set of corresponding
quantity of interest samples

JM = {J (1), J (2), . . . , J (M)} (6)

where the shorthand notation J (i) ≡ J(u(·, ω(i))) has been used. The Monte
Carlo (MC) estimated expected value of the quantity of interest J(u(·, ω))
with respect to the probability law P is

EM [J ] ≡ 1

M

M∑
i=1

J (i) (7)
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2.1.1 MC expected value

The MC estimated expectation is itself a random variable. Thus, execut-
ing the MC algorithm many times for the same J(u) produces a distri-
bution of expectation estimates. Because the joint probability density as-
sociated with any particular MC calculation occurring is precisely known,
p(ω(1))p(ω(2)) . . . p(ω(M)), the expected value of the MC estimator can be
readily calculated.

Lemma 1 (MC Expected Value) Let EM [J(u)] denote the MC estimator
described in Def.(1). EM [J ] is a random variable with expected value E[J ],
i.e.,

E[EM [J ]] = E[J ] (8)

Proof: Event outcome samples, ω(i), i = 1, . . . ,M , are i.i.d. random vari-
ables that each satisfy a probability law P . Consequently, the quantity of
interest samples, J (i) ≡ J(u(·, ω(i))), are also independent random variables.
Since EM [J ] is a summation over quantity of interest samples, it must also be
a random variable. Application of the expectation formula (3) to a quantity
of interest sample reveals that

E[J (i)] ≡ E[J(u(·, ω(i))] = E[J ] , i = 1, . . . ,M (9)

Calculating the expected value of EM [J ] then yields

E[EM [J ]] = E

[
1

M

M∑
i=1

J (i)

]
(10a)

=
1

M

M∑
i=1

E
[
J (i)
]

(10b)

=
1

M

M∑
i=1

E [J ] (10c)

= E[J ] (10d)

This establishes that EM [J ] is a random variable with expected value E[J ].
�
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2.1.2 MC mean squared error

This previous lemma shows that the MC estimator is an unbiased statistic,

Bias[EM [J ]] = E[EM [J ]− E[J ]] = 0

This does not imply that the mean squared error (MSE), E[(E[J ]−EM [J ])2],
is zero. The next lemma establishes the rate of convergence of the MSE for
the MC estimator with respect to sample size M . A proof of this well known
lemma is provided here because the steps used in the proof will be repeated
later in multilevel MC analysis.

Lemma 2 (MC Mean Squared Error) Let J(u(·, ω)) denote a random
variable quantity of interest with bounded variance and EM [J(u)] denote the
MC estimator described in Def. (1). The MC mean squared error (equal to
the variance) depends only on Var[J ] and inversely on the number of samples
M , i.e.,

E
[(
E[J ]− EM [J ]

)2
]

= Var[EM [J ]] =
Var[J ]

M
(11)

Proof: Application of Lemma 1 verifies that the mean squared error and
variance are identical

E
[(
E[J ]− EM [J ]

)2
]

= E
[(
E[EM [J ]]− EM [J ]

)2
]

= Var[EM [J ]] (12)

Next, evaluate the expected mean squared error

E
[(
E[J ]− EM [J ]

)2
]

=
1

M2
E

[
M∑
i=1

(E[J ]− J (i))
M∑
j=1

(E[J ]− J (j))

]
(13a)

=
1

M2
E

 M∑
i=1

(E[J ]− J (i))
(
(E[J ]− J (i)) +

M∑
j=1
i 6=j

(E[J ]− J (j))
)
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=
1

M2
E

[
M∑
i=1

(E[J ]− J (i))2

]
(13b)

=
1

M2
E

[
M∑
i=1

((E[J ])2 − 2E[J ]J (i) + (J (i))2)

]
(13c)

=
1

M

(
E[J2]− (E[J ])2

)
(13d)

=
Var[J ]

M
(13e)

Observe that the double summation appearing in (13a) collapses to a single
summation in (13b) by exploiting the i.i.d. property (9) of the samples. The
result in (13d) also follows from (9) and the generalization to k-moments. �

The MC root mean squared error, RMSE[J ] = MSE
1
2 [J ] reveals the

well known slow O(M− 1
2 ) rate of convergence of the MC estimator.

2.2 Multilevel Monte Carlo (MLMC) estimator

The slow O(M− 1
2 ) rate of convergence of the MC estimator makes the MC

estimator costly when small RMS error is desired. Multilevel variants of the
MC estimator have been introduced to reduce the estimation cost for a given
RMS error level. A starting point for the multilevel Monte Carlo (MLMC)
estimator is the introduction of L+ 1 approximate models of J(u(x, t, ω))

JL = {J0, J1, . . . , JL} , (14)

where the shorthand notation Jl = J(ul(x, t, ω)) has been used. Later in
Sect. 2.2.6, we will assume these approximate models come from the finite-
dimensional approximation of u(x, t, ω) with respect to the (x, t) dependent
variables, e.g., the numerical PDE solutions discretized on a sequence of
meshes. Consequently, J0 will be referred to as the “coarse scale” model,
JL will be referred to as the “fine scale” model, and the subscript will be
referred to as a “level” index.

Linearity of the expectation functional permits the calculation of E[JL]
in terms of the coarse scale problem E[J0] and the sum of incremental cor-
rections over levels

E[JL] = E[J0] + E[J1 − J0] + · · ·+ E[JL − JL−1]
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=
L∑
l=0

E[Jl − Jl−1] (15)

where the convention J−1 = 0 is imposed here and elsewhere. Given (15),
the MLMC estimator is obtained by approximating the right-hand side ex-
pectations using MC estimators.

Definition 2 (MLMC Estimator) Let J(u(x, t, ω)) denote a random vari-
able quantity of interest, L a maximum levels parameter, and JL a set con-
taining approximate models of J(u(x, t, ω))

JL = {J0, J1, . . . , JL} , (16)

where the shorthand notation Jl = J(ul(x, t, ω)) for l = 0, . . . , L has been
used. The Multilevel Monte Carlo (MLMC) estimator is

EL[JL] =
L∑
l=0

EMl
[Jl − Jl−1] (17)

where the convention J−1 = 0 is imposed. For each level l in the right-hand-
side summation, an MC estimator calculation (see Def. 1) with sample size
Ml is performed

EMl
[Jl − Jl−1] ≡ 1

Ml

Ml∑
i=1

(Jl(ω
(i)
l )− Jl−1(ω

(i)
l )) (18)

using independent and identically distributed (i.i.d.) random event outcome

samples, {ω(1)
l , ω

(2)
l , . . . , ω

(Ml)
l } for level l, and corresponding quantity of in-

terest samples Jl(ω
(i)
l ) ≡ J(ul(·, ω(i)

l )) and Jl−1(ω
(i)
l ) ≡ J(ul−1(·, ω(i)

l )).

Remark 1 Note that because different i.i.d. event outcome samples are used
in each evaluation of (18), quantities of interest Jl and Jl−1 for each level l
must be calculated and can not be reused in other levels. This inefficiency is
addressed in Sect. 3.
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2.2.1 MLMC expected value

The next lemma establishes that the MLMC estimator is a random variable
with expected value E[JL].

Lemma 3 (MLMC Expected Value) Let EL[JL] denote the MLMC es-
timator described in Def.(2). EL[JL] is a random variable with expected value
E[JL],

E[EL[JL]] = E[JL] (19)

Proof: From Lemma 1, each MC evaluation EMl
[Jl − Jl−1] is a random

variable. Since EL[JL] a sum over these MC evaluations, it then follows
that EL[JL] is a random variable. Note, for later use, that since there is no
sharing of event outcome samples between levels, MLMC levels EMl

[Jl−Jl−1]
are independent random variables. Calculating the expected value of EL[JL]
yields

E[EL[JL]] = E

[
L∑
l=0

EMl
[Jl − Jl−1]

]
(20a)

=
L∑
l=0

E [EMl
[Jl − Jl−1]] (20b)

=
L∑
l=0

E[Jl − Jl−1] (20c)

= E[JL] (20d)

The (20b) follows from linearity of the expectation functional. The (20c)
result is minor revision of Lemma 1. This establishes that EL[JL] is a random
variable with expected value E[JL]. �

2.2.2 MLMC mean squared error for the E[JL] statistic

The previous lemma shows that the expected value of MLMC estimator
EL[JL] is E[JL] while the expectation statistic actually sought is E[J ]. This
discrepancy is referred to as an approximation error bias. To reconcile this
discrepancy, the mean squared error with respect to the E[JL] statistic,
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E[(E[JL] − EL[JL])2], is first estimated in Lemma 4, followed by the ad-
dition of an approximation error bias correction in Lemma 5, thus yielding
the desired estimate of the mean squared error, E[(E[J ]− EL[JL])2].

Lemma 4 (MLMC Mean Squared Error for E[JL]) Let EL[JL] denote
the MLMC estimator described in Def. (2). Further, assume that all models
Jl ≡ J(ul(x, t, ω)), l = 0, . . . , L have bounded variance. The mean squared
error for the MLMC estimator with respect to the E[JL] statistic is given by

E
[(
E[JL]− EL[JL]

)2
]

= Var[EL[JL]] =
L∑
l=0

Var[Jl − Jl−1]

Ml

(21)

Proof:

E
[(
E[JL]− EL[JL]

)2
]

= Var[EL[JL]] (22a)

= Var

[
L∑
l=0

EMl
[Jl − Jl−1]

]
(22b)

=
L∑
l=0

Var[EMl
[Jl − Jl−1]] (22c)

=
L∑
l=0

Var[Jl − Jl−1]

Ml

(22d)

Equation (22a) follows from Lemma 3. The proof of Lemma 3 also establishes
that EMl

[Jl − Jl−1] are each independent random variables for l = 0, . . . , L.
Consequently, EL[JL] is the sum of independent random variables. Given N
independent random variables {X(1), X(2), . . . , X(i)}, the variance of the sum
of these variables is the sum of the variances, i.e.,

Var

[
N∑
i=1

X(i)

]
=

N∑
i=1

Var[X(i)] (23)

which establishes the (22c) summation. Application of Lemma 2 to each
term in the (22c) summation yields (22d) and the stated lemma. �
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2.2.3 MLMC mean squared error for the E[J ] statistic

Lemma 3 established that the expected value of the MLMC estimator is E[JL]
while E[J ] is the expectation statistic that is actually sought. This difference
is the approximation error bias associated with the MLMC estimator

Bias[EL[JL]] = E[EL[JL]− E[J ]] = E[JL − J ] (24)

The next lemma adds a correction term to obtained the MSE, E[(E[J ] −
EL[JL])2].

Lemma 5 (MLMC Mean Squared Error for E[J ]) Let EL[JL] denote
the MLMC estimator described in Def. (2). Further, assume that all models
Jl ≡ J(ul(x, t, ω)), l = 0, . . . , L have bounded variance. The mean squared
error for the MLMC estimator with respect to the E[J ] statistic is given by

E
[(
E[J ]− EL[JL]

)2
]

=
L∑
l=0

Var[Jl − Jl−1]

Ml

+ E2[J − JL] (25)

Proof:

E[(E[J ]− EL[JL])2] = E[(EL[JL])2 − 2E[J ]EL[JL] + E2[J ]] (26a)

= E[(EL[JL])2 − 2E[JL]EL[JL] + E2[JL]] (26b)

+E[−2E[J ]EL[JL] + E2[J ] + E2[JL]] (26c)

= E[(EL[JL]− E[JL])2] + E2[J − JL] (26d)

=
L∑
l=0

Var[Jl − Jl−1]

Ml

+ E2[J − JL] (26e)

Expanding the left-hand-side squared terms followed by addition-subtraction
of identical terms yields (26d). Replacing the first term in the summation
by the result of Lemma 4 yields the stated lemma. �

2.2.4 Calculation of MLMC parameters

Observe that the MLMC formulation (17) introduces L + 1 undetermined
sample size parameters, {M0,M1, . . . ,ML}, that must be determined. The
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MSE given in Lemma 5 contains variance terms that depend on these sam-
ple size parameters and an approximation error term that does not. Con-
sequently, when a mean squared error of ε2 or less is desired, a heuristic
approach for achieving this error control and determining the sample size
parameters is based on the following splitting of ε2 and optimization strat-
egy:

1. Require that the approximation error bias term in (25) is dominated
by ε2

2

E2[J − JL] ≤ ε2

2
(27)

The left-hand-side can be made small by making J − JL small, i.e.,
making JL a good approximation to J . It is assumed here that J −
JL can be monotonically decreased by increasing the maximum level
parameter L.

2. Require that the variance terms in (25) are dominated by ε2

2

L∑
l=0

Var[Jl − Jl−1]

Ml

≤ ε2

2
(28)

The left-hand-side can be made small by minimizing the individual
terms in the summation subject to a cost constraibnt.

Let Cl denote the computational cost of evaluating a quantity of interest
sample at level l. The total cost of an MLMC calculation is

Cost =
L∑
l=0

Ml (Cl + Cl−1) (29)

where the convention C−1 = 0 has been imposed. Next, minimize the
left-hand-side of (28) subject to a fixed total cost (29). For notational
brevity, let Vl ≡ Var[Jl − Jl−1]. Assuming M a continuous variable,
pose the Lagrange multiplier optimization problem with Lagrangian

L(M,λ) =
L∑
l=0

Vl
Ml

+ λ (
L∑
l=0

Ml(Cl + Cl−1)− Cost) (30)
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with optimality conditions

∂L

∂Ml

= − Vl
M2

l

+ λ (Cl + Cl−1) = 0 , l = 0, . . . , L (31)

∂L

∂λ
=

L∑
l=0

Ml(Cl + Cl−1)− Cost = 0 (32)

This determines the sample size parameters (rounded to the nearest
integer in implementations)

Ml ≈

√
Vl

λL (Cl + Cl−1)
, l = 0, . . . , L (33)

with λL chosen to satisfy (28)

λL =

(
ε2/2∑L

l′=0

√
Vl′(Cl′ + Cl′−1)

)2

(34)

Using this λL, the MLMC cost (29) then simplifies to

Cost =
ε2/2

λL
(35)

2.2.5 MLMC implementation

A bootstrap MLMC implementation starts from a single level L = 0 and
incrementally adds levels until (27) and (28) are satisfied:

1. Initialize the maximum levels parameter, L = 0,

2. Estimate Var[JL − JL−1] using a variance estimator given an initial
representative population of samples for JL − JL−1

3. Calculate λL in (34) using previously estimated variances,

4. Calculate sample sizes {M0,M1, . . . ,ML} using (33) and enrich level
sample populations using these revised sample sizes,

5. If L > 0, check the approximation error requirement (27), E2[J−JL] ≤
ε2

2
, by checking whether |EML

[JL − JL−1]| ≤ Capprox
ε√
2

for a chosen
Capprox constant. If not satisfied, set L = L+ 1 and go to 2.
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A common criticism of the bootstrap implementation is the sequential ad-
dition of levels which inhibits a level of parallelism desirable on large scale
computing platforms. Each time λL is recomputed in Step 3 and sample
size populations are adjusted in Step 4, additional quantity of interest cal-
culations at all levels may be necessary. In the next section, we consider
output quantities of interest derived from numerical PDE solutions obtained
on a sequence of refined meshes. Using an idealized model that assumes an
asymptotic behavior of a quantity of interest with respect to mesh refine-
ment, it then becomes possible to predict optimal sample size populations
for all L levels given estimated variances from only coarse mesh solutions and
an estimated convergence rate for the quantity of interest.

2.2.6 MLMC estimation using numerical PDE mesh hierarchies

Let {J0, J1, . . . , JL} denote output quantities of interest derived from numer-
ically approximated PDE solutions obtained on a sequence of refined meshes
{m0,m1, . . . ,mL} with refinement between successive mesh levels achieved
by increasing the number of mesh points in each of d dimensions in space-
time by a factor γ. The cost Cl of evaluating a quantity of interest Jl on a
mesh ml is then assumed to be of the form

Cl = C0γ
l d (36)

where C0 denotes a reference cost value. Next, an idealized model of the
quantity of interest with level-dependent discretization error model is given
by

Jl ≡ J(ul(x, t, ω); ∆0, γ, r, L) = p(x, t, ω)+(γ−l ∆0)rq(x, t, ω) , l = 0, . . . , L
(37)

with mesh resolution ∆0, enrichment factor γ, rate parameter r, a maximum
level parameter L, and random variable functions p(x, t, ω) and q(x, t, ω).
Using the assumed forms (36) and (37), the optimal sample size parameters
described in Sect. 2.2.4 can be determined for a given desired mean squared
error ε2, rate parameter r, total number of levels L, space-time dimensions d,
and coarse level variances V0 ≡ Var[J0] and V1 ≡ Var[J1 − J0]. The depen-
dency on at least 2 variances (that must be estimated using an estimator)
is unavoidable. As a practical matter, V0 and V1 have been chosen due to
the relatively low cost in estimating them on coarse meshes. For simplicity,
the formulas below assume an enrichment factor of γ = 2 (doubling mesh
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degrees of freedom in each dimension). Under these assumptions, the finite
sums appearing in λL in (34) can be evaluated in closed form yielding

(λL)−
1
2 =

2(V0C0)
1
2

ε2
+

2
(
V1C0 (1 + 2−d)

) 1
2

ε2

(
1− 2−L(r−d/2)

2−d/2 − 2−r

)
(38)

A formula for the coarsest mesh sample size then reduces to

M0 =
2V0

ε2
+

2
(
V0 V1 (1 + 2−d)

) 1
2

ε2

(
1− 2−L(r−d/2)

2−d/2 − 2−r

)
(39)

and a formula for the finest level sample size reduces to

ML =
2−L(r+d/2)+r

(1 + 2−d)
1
2

(
V1

V0

) 1
2

M0 (40)

The remaining level sample sizes can then be simply calculated from

Ml = 2(L−l)(r+d/2)ML , l = 1, . . . , L− 1 (41)

which reveals the dependency on the rate parameter r and the space-time
dimension d.

Remark 2 The γ = 2 sample size formula (41) can be compared to the
sample size formula obtained by Mishra and Schwab [8, 9] and Sukys [12]

Ml = 22(L−l)sML , l = 0, . . . , L− 1 (42)

In deriving this formula, they consider the finite-volume discretization of hy-
perbolic conservation laws and the MLMC estimation of norms of the solution
expectation integrated over the spatial domain. The parameter s denotes the
convergence rate of the finite-volume method. The sample size parameter for-
mula (42) has been obtained based on the equidistribution of mean squared
error over levels of the MLMC estimator. The growth rate in sample size is
approximately twice the rate in (40). This difference can be quite significant
for even modest values of s.

Remark 3 When solving many similar problems, where the rate of conver-
gence r is nearly constant and reliably estimated, it is often more convenient
to perform an initial MLMC calculation using user specified values of M0 and
ML with Ml, l = 1, . . . , L − 1 obtained using (41). This strategy avoids the
explicit estimation of the variances V0 and V1. An initial MLMC calculation
can then be used as a basis for adjusting sample sizes (if needed) using either
the formulas of Sect. 2.2.4 or else Eqns. (39)-(41).
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3 Multilevel Monte Carlo Estimator with Sam-

ple Reuse (MLMC-SR)

This section presents a variant of the MLMC estimator that reuses event
outcome samples in calculating quantities of interest at levels greater than
or equal to a specified level l∗. There are compelling reasons for sample reuse
and the development of MLMC-SR that are deferred to Sect. 4.2.

Definition 3 (MLMC-SR Estimator) Let J(u(x, t, ω)) denote a random
variable quantity of interest, L a maximum levels parameter, l∗ a minimum
sample reuse level parameter, JL a set containing approximate models of
J(u(x, t, ω))

JL = {J0, J1, . . . , JL} , (43)

where the shorthand notation Jl = J(ul(x, t, ω)) has been used, and ML a set
containing decreasing integer level parameters

ML = {M0,M1, . . . ,ML} with Mj < Mi, ∀ i < j (44)

Further, let X∗ = {ω(1)
∗ , ω

(2)
∗ , . . . , ω

(Ml∗ )
∗ } denote an event outcome sample

reuse set containing Ml∗ independent and identically distributed (i.i.d.) ran-
dom event outcome samples that satisfy a given probability law P . The Mul-
tilevel Monte Carlo estimator with Sample Reuse (MLMC-SR) for the fine
scale model JL is

EL
l∗ [JL] =

l∗−1∑
l=0

EMl
[Jl − Jl−1] +

L∑
l=l∗

E∗Ml
[Jl − Jl−1] (45)

where 0 < l∗ < L and the convention J−1 = 0 has been imposed. The first
right-hand-side summand EMl

[Jl−Jl−1] is described in Def. 2 and the second
right-hand-side summand is defined as

E∗Ml
[Jl − Jl−1] ≡ 1

Ml

Ml∑
i=1

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ )) (46)

The introduction of the parameter l∗ in the MLMC-SR estimator per-
mits retaining i.i.d. sampling and a standard MLMC calculation for levels

18



less than l∗. As a practical matter, l∗ is always chosen greater than zero.
Motivated by the analysis of Sect. 3.2, choosing l∗ > 0 avoids possible large
covariance contributions to the mean squared error when sample reuse in-
cludes the lowest level data, J0.

3.1 MLMC-SR expected value

The next lemma shows that sample reuse in the MLMC-SR estimator does
not change the resulting expected value.

Lemma 6 (MLMC-SR Expected Value) Let EL
l∗ [JL] denote the MLMC-

SR estimator described in Def.(3). EL
l∗ [JL] is a random variable with expected

value E[JL],
E[EL

l∗ [JL]] = E[JL] (47)

Proof: A proof follows from elements of the proof of Lemma 3 and is unaf-
fected by sample reuse. �

3.2 MLMC-SR mean squared error for the E[JL] statistic

The MSE for the MLMC-SR estimator is now complicated by the use of
sample reuse which introduces added covariance contributions.

Lemma 7 (MLMC-SR Mean Squared Error for E[JL]) Let EL
l∗ [JL] de-

note the MLMC-SR estimator described in Def. (3). Further, assume that
all models Jl ≡ J(ul(x, t, ω), l = 0, . . . , L have bounded variance and covari-
ance. The mean squared error for the MLMC-SR estimator with respect to
the E[JL] statistic is given by

E
[(
E[JL]−EL

l∗ [JL]
)2
]

=
L∑
l=0

1

Ml

Var[Jl−Jl−1] + 2
L∑

l′=l+1
l≥l∗

Cov[Jl−Jl−1, Jl′−Jl′−1]


(48)

Proof: Due to sample reuse in the MLMC-SR estimator (45) for levels
greater than or equal to l∗, the level summand terms E∗Ml

[Jl − Jl−1] are no
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longer independent random variables which complicates the proof. The proof
is simplified by first rewriting (45) as a sum over sample subsets that form
independent random variables regardless of whether sample reuse is or is not
used. Define the contiguous subinterval index sets

IMk
= {ML−k+1 + 1,ML−k+1 + 2, . . . ,ML−k} , k = 0, . . . , L (49)

with the convention that ML+1 = 0. The index sets are non-overlapping,
IMk
∩k 6=k′ IMk′

= ∅, with unions

∪lk=0 IMk
= {1, . . . ,ML−l} , l = 0, . . . , L (50)

and cardinality
|IMk
| = ML−k −ML−k+1 (51)

As a strategy for the remainder of the proof, sample reuse will initially be
assumed over all L+1 levels followed later by a reintroduction of the level pa-
rameter l∗ based on vanishing covariances. Rewrite the MLMC-SR estimator
as a summation over the index subsets IMk

EL
l∗ [JL] =

L∑
l=0

E∗Ml
[Jl − Jl−1] (52a)

=
L∑
l=0

1

Ml

Ml∑
i=1

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ )) (52b)

=
L∑
k=0

∑
i∈IMk

L−k∑
l=0

1

Ml

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ )) (52c)

=
L∑
k=0

Tk (52d)

where in (52d)

Tk ≡
∑
i∈IMk

L−k∑
l=0

1

Ml

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ )) (53)
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are now independent random variables. Evaluating the MSE for the MLMC-
SR estimator

E[(E[JL]− EL
l∗ [JL])2] = Var[EL

l∗ [JL]] (54a)

= Var

[
L∑
k=0

Tk

]
(54b)

=
L∑
k=0

Var [Tk] (54c)

=
L∑
k=0

(E[T 2
k ]− E2[Tk]) (54d)

where Lemma 6 has been used in (54a) and the identity (23) has been used
in (54c). Thus, the remaining tasks are the evaluation of E[T 2

k ] and E2[Tk].
Evaluating E[Tk]

E[Tk] = E

∑
i∈IMk

L−k∑
l=0

1

Ml

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ ))

 (55a)

=
L−k∑
l=0

1

Ml

∑
i∈IMk

E[Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ )] (55b)

=
L−k∑
l=0

|IMk
|

Ml

E[Jl − Jl−1] (55c)

where linearity of the expectation functional has been used in (55b) and the
i.i.d. property (9) has been used in the evaluation of (55c). Using this result,
it then follows that

E2[Tk] =
L−k∑
l=0

L−k∑
l′=0

|IMk
|2

MlMl′
E[Jl − Jl−1]E[Jl′ − Jl′−1] (56)
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Next, E[T 2
k ] is evaluated

E[T 2
k ] =

L−k∑
l=0

L−k∑
l′=0

1

MlMl′

∑
i∈IMk

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ ))


×

 ∑
i′∈IMk

(Jl′(ω
(i′)
∗ )− Jl′−1(ω(i′)

∗ ))

 (57a)

=
L−k∑
l=0

L−k∑
l′=0

1

MlMl′

∑
i∈IMk

(Jl(ω
(i)
∗ )− Jl−1(ω(i)

∗ ))


×

(Jl′(ω
(i)
∗ )− Jl′−1(ω(i)

∗ )) +
∑

i′∈IMk
i′ 6=i

(Jl′(ω
(i′)
∗ )− Jl′−1(ω(i′)

∗ ))


=

L−k∑
l=0

L−k∑
l′=0

|IMk
|

MlMl′
E[(Jl − Jl−1)(Jl′ − Jl′−1)] (57b)

+
L−k∑
l=0

L−k∑
l′=0

|IMk
|(|IMk

| − 1)

MlMl′
E[Jl − Jl−1]E[Jl′ − Jl′−1] (57c)

where the i.i.d. property of samples has been used in (57b) and (57c). In-
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serting (56), (57b), and (57c) into the MSE equation (54d) yields

E[(E[JL]−EL
l∗ [JL])2] =

L∑
k=0

L−k∑
l=0

L−k∑
l′=0

|IMk
|

MlMl′
Cov[Jl−Jl−1, Jl′−Jl′−1] (58a)

=
L∑
l=0

L∑
l′=0

L−max(l,l′)∑
k=0

|IMk
|

MlMl′
Cov[Jl−Jl−1, Jl′−Jl′−1] (58b)

=
L∑
l=0

L∑
l′=0

min(Ml,Ml′)

MlMl′
Cov[Jl−Jl−1, Jl′−Jl′−1] (58c)

=
L∑
l=0

Var[Jl−Jl−1]

Ml

(58d)

+
L∑
l=0

L∑
l′=0
l′ 6=l

min(Ml,Ml′)

MlMl′
Cov[Jl−Jl−1, Jl′−Jl′−1] (58e)

=
L∑
l=0

1

Ml

(
Var[Jl−Jl−1] (58f)

+2
L∑

l′=l+1

Cov[Jl−Jl−1, Jl′−Jl′−1]
)

(58g)

To perform the rearrangement of summations in (58b), it must be shown
that the following identity holds for any summand depending on (k, l, l′)

L∑
k=0

L−k∑
l=0

L−k∑
l′=0

=
L∑
l=0

L∑
l′=0

L−max(l,l′)∑
k=0

A standard approach to showing this identity utilizes Iverson bracket nota-
tion [7] that reduces the task to the manipulation of elementary logic con-
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junctions, i.e.,

L∑
k=0

L−k∑
l=0

L−k∑
l′=0

=
∑
k

∑
l

∑
l′

[0 ≤ k ≤ L] · [0 ≤ l ≤ L− k] · [0 ≤ l′ ≤ L− k] (59a)

=
∑
k

∑
l

∑
l′

[0 ≤ k] · [k ≤ L] · [0 ≤ l] · [l ≤ L− k] · [0 ≤ l′] · [l′ ≤ L− k] (59b)

=
∑
l

∑
l′

∑
k

[0 ≤ k] · [k ≤ L] · [0 ≤ l] · [k ≤ L− l] · [0 ≤ l′] · [k ≤ L− l′] (59c)

=
∑
l

∑
l′

∑
k

[0 ≤ l] · [l ≤ L] · [0 ≤ l′] · [l′ ≤ L] · [0 ≤ k] · [k ≤ L−max(l, l′)](59d)

=
∑
l

∑
l′

∑
k

[0 ≤ l ≤ L] · [0 ≤ l′ ≤ L] · [0 ≤ k ≤ L−max(l, l′)] (59e)

=
L∑
l=0

L∑
l′=0

L−max(l,l′)∑
k=0

(59f)

where in (59e) the logic simplifications

[k ≤ L] · [k ≤ L− l] · [k ≤ L− l′] implies [k ≤ L−max(l, l′)]

and
[l ≤ L− k] implies [l ≤ L] , [l′ ≤ L− k] implies [l′ ≤ L]

have been used. The simplification in (58c) results from application of (50)

and (51). Invoking symmetry of both the covariance and
min(Ml,Ml′ )

MlMl′
terms

yields (58g). As a final step, all covariances for levels l < l∗ vanish due to
the assumption of i.i.d. sampling at those levels. �

3.2.1 MLMC-SR mean squared error for the E[J ] statistic

Lemma 3 and Lemma 6 established that the expected values of the MLMC
estimator and the MLMC-SR estimator are identical. Thus, the approxima-
tion error bias is also identical

Bias[EL
l∗ [JL]] = E[EL

l∗ [JL]− E[J ]] = E[JL − J ] (60)

The next lemma adds a correction term to obtainb the MSE, E[(E[J ] −
EL
l∗ [JL])2].
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Lemma 8 (MLMC-SR Mean Squared Error for E[J ]) Let EL
l∗ [JL] de-

note the MLMC-SR estimator described in Def. (3). Further, assume that all
models Jl ≡ J(ul(x, t, ω), l = 0, . . . , L have bounded variance and covariance.
The mean squared error for the MLMC-SR estimator with respect to the E[J ]
statistic is given by

E
[(
E[J ]−EL

l∗ [JL]
)2
]

=
L∑
l=0

1

Ml

Var[Jl−Jl−1] + 2
L∑

l′=l+1
l≥l∗

Cov[Jl−Jl−1, Jl′−Jl′−1]


+ E2[J − JL] (61)

Proof: The proof closely follows the proof of Lemma 5 and is omitted. �

3.2.2 Calculation of MLMC-SR parameters

Determining parameters for the MLMC-SR estimator follows a path similar
to the MLMC estimator. The MLMC-SR formulation (45) introduces L +
1 undetermined sample size parameters, {M0,M1, . . . ,ML}, that must be
determined. The MSE given in Lemma 8 contains variance and covariance
terms that depend on these sample size parameters and an approximation
error that does not. Following the procedure of Sect. 2.2.4, when a mean
squared error of ε2 or less is desired, a heuristic approach for achieving this
error control and determining the sample size parameters is based on the
following splitting of ε2 and optimization strategy:

1. Require that the approximation error bias term in (61) is dominated
by ε2

2

E2[J − JL] ≤ ε2

2
(62)

It is assumed here that J − JL can be monotonically decreased by
increasing the maximum level parameter L.

2. Require that the variance-covariance terms in (61) are dominated by
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ε2

2

L∑
l=0

1

Ml

Var[Jl − Jl−1] + 2
L∑

l′=l+1
l≥l∗

Cov[Jl − Jl−1, Jl′ − Jl′−1]

 ≤ ε2

2

(63)
The left-hand-side can be made small by minimizing the individual
terms in the summation subject to a cost constraint.

Let Cl denote the computational cost of evaluating and quantity of
interest sample at level l. The total cost of an MLMC-SR calcula-
tion differs significantly from the MLMC cost (29) due to the reuse of
samples at finer levels, i.e.,

Cost =
l∗∑
l=0

Ml(Cl + Cl−1) +
L∑

l=l∗+1

Ml Cl (64)

where the convention C−1 = 0 has again been imposed. Next, minimize
the left-hand-side of (63) subject to the fixed total cost (64). Let V̂l
denote the combined variance-covariance terms

V̂l ≡ Var[Jl − Jl−1] + 2
L∑

l′=l+1
l≥l∗

Cov[Jl − Jl−1, Jl′ − Jl′−1] , l = 0, . . . , L

(65)
Assuming M a continuous variable, pose the Lagrange multiplier opti-
mization problem with Lagrangian

LSR(M,λ) =
L∑
l=0

V̂l
Ml

+ λ

(
l∗∑
l=0

Ml(Cl + Cl−1) +
L∑

l=l∗+1

Ml Cl − Cost

)
(66)

with optimality conditions

∂LSR

∂Ml

= − V̂l
M2

l

+ λ (Cl + Cl−1) = 0 , l = 0, . . . , l∗, (67)

∂LSR

∂Ml

= − V̂l
M2

l

+ λCl = 0 , l = l∗ + 1, . . . , L, (68)
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and
∂LSR

∂λ
=

l∗∑
l=0

Ml(Cl + Cl−1) +
L∑

l=l∗+1

Ml Cl − Cost = 0 (69)

This determines the sample size parameters (rounded to the nearest
integer in implementations)

Ml ≈


√

V̂l
λL (Cl+Cl−1)

for 0 ≤ l ≤ l∗

√
V̂l

λL Cl
for l∗ < l ≤ L

(70)

with λL chosen to satisfy (63)

λL =

 ε2/2∑l∗

l′=0

√
V̂l′(Cl′ + Cl′+1) +

∑L
l′=l∗+1

√
V̂l′Cl′


2

(71)

The MLMC-SR cost (64) then simplifies to

Cost =
ε2/2

λL
(72)

3.2.3 MLMC-SR implementation

The bootstrap MLMC-SR implementation introduces new complications not
present in the MLMC implementation of Sect. 2.2.5. The MLMC-SR boot-
strap implementation starts from a single level L = 0 and incrementally adds
levels until (62) and (63) are satisfied. New i.i.d. outcome event samples are
generated if the current level L < l∗. Otherwise, an i.i.d. event outcome sam-
ple reuse set is established when L = l∗ and those event outcome samples
are reused for L ≥ l∗.

1. Initialize the maximum levels parameter, L = 0,

2. If L = l∗, establish a event outcome sample reuse population.

3. Estimate Var[JL−JL−1] given an initial population of new i.i.d. samples
if L < l∗ or reused samples if L ≥ l∗
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4. Estimate Cov[Jl − Jl−1, JL − JL−1] for l∗ ≤ l < L− 1.

5. Calculate λL in (71) using previously estimated variances and covari-
ances.

6. Calculate sample sizes {M0,M1, . . . ,ML} using (70) and enrich level
sample populations using these revised sample sizes,

7. If L > 0, check the approximation error requirement (62), E2[J−JL] ≤
ε2

2
, by checking whether |EML

[JL − JL−1]| ≤ Capprox
ε√
2

for a chosen
Capprox constant. If not satisfied, set L = L+ 1 and go to 2.

3.2.4 MLMC-SR estimation using numerical PDE mesh hierarchies

The calculation of optimal sample size parameters, assuming a PDE mesh
hierarchy and idealized quantity of interest, follows the development of Sect.
2.2.6 for the MLMC estimator. Let {J0, J1, . . . , JL} denote quantities of in-
terest derived from numerically approximated PDE solutions obtained on a
sequence of refined meshes {m0,m1, . . . ,mL} with refinement between suc-
cessive mesh levels achieved by increasing the number of mesh points in each
of d dimensions in space-time by the factor γ. The cost Cl of evaluating a
quantity of interest Jl on a mesh ml is then assumed to be of the form

Cl = C0γ
l d (73)

where C0 denotes a reference cost value. Next, assume the following idealized
model of the quantity of interest with level-dependent discretization error
model introduced previously

Jl ≡ J(ul(x, t, ω)) = p(x, t, ω) + (γ−l ∆0)rq(x, t, ω) , l = 0, . . . , L (74)

with mesh resolution ∆0, enrichment factor γ, rate parameter r, a maximum
level parameter L, and random variable functions p(x, t, ω) and q(x, t, ω).
Using the assumed forms (73) and (74), the optimal sample size parameters
described in Sect. 3.2.2 can be determined for a given desired mean squared
error ε2, rate parameter r, total number of levels L, space-time dimensions
d, and coarse level variances V0 ≡ Var[J0] and V1 ≡ Var[J1−J0]. To simplify
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the presentation, 0 < l∗ < L and γ = 2 has been assumed. Under these
assumptions, λL in (71) can be simplified to

(λL)−
1
2 =

2(V0C0)
1
2

ε2
+

2(V1C0)
1
2

ε2

(
f1(l∗, r, d) + f2(l∗, L, r, d) + f3(l∗, L, r, d)

)
(75)

using the functions

f1(l∗, r, d) = (1 + 2−d)1/2

(
1− 2−(l∗−1)(r−d/2)

2−d/2 − 2−r

)
f2(l∗, L, r, d) = 2r (1 + 2−d)1/22−l

∗(r−d/2)

[
1 + 2

(
1− 2−(L−l∗)r

2r − 1

)] 1
2

f3(l∗, L, r, d) = 2r
L∑

l=l∗+1

2−l(r−d/2)

[
1 + 2

(
1− 2−(L−l)r

2r − 1

)] 1
2

(76)

A formula for the lowest level sample size parameter then reduces to

M0 =
2V0

ε2
+

2(V0 V1)
1
2

ε2

(
f1(l∗, r, d) + f2(l∗, L, r, d) + f3(l∗, L, r, d)

)
(77)

and the remaining level sample sizes can then be calculated from

Ml =


2−l(r+d/2)+r

(1+2−d)
1
2

(
V1
V0

) 1
2
M0 for 0 < l < l∗

2−l(r+d/2)+r

(1+2−d)
1
2

[
1 + 2

(
1−2−(L−l)r

2r−1

)] 1
2
(
V1
V0

) 1
2
M0 for l = l∗

2−l(r+d/2)+r
[
1 + 2

(
1−2−(L−l)r

2r−1

)] 1
2
(
V1
V0

) 1
2
M0 for l∗ < l ≤ L

(78)

which reveals the dependency on the rate parameter r, space-time dimension
d, and maximum number of levels L.

4 Unbiased RMLMC and RMLMC-SR Esti-

mation of the E[J ] Statistic

Once again, recall the idealized quantity of interest model that includes a
level-dependent model of discretization error

Jl ≡ J(ul(x, t, ω)) = p(x, t, ω) + (γ−l∆0)rq(x, t, ω) , l = 0, . . . , L (79)
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When a rate r > 0 is given and ∆0 finite, an explicit recovery of the zero
discretization error limit, lim∆0→0 J(ul(x, t, ω); ∆0, γ, r, L) = J(u), can still
be obtained for γ > 1 via the extrapolation formula

J = JL +
1

γr − 1
(JL − JL−1) (80)

This equation is verified using (79). Exploiting linearity of the expectation
functional, a similar extrapolation formula for expectation is obtained

E[J ] = E[JL] +
1

γr − 1
E[JL − JL−1] (81)

Replacing the right-hand-side of (81) with either the MLMC or MLMC-SR
estimator yields an unbiased estimator for E[J ] referred to later as RMLMC
or RMLMC-SR, respectively. Analysis given below, that assumes the ideal-
ized quantity of interest (79) with known rate r > 0 and γ > 1, reveals that
this modification changes the calculation of the optimal sample size at the
finest level L for both estimators.

This approach to removing MLMC approximation error bias is discussed
in [5, 3]. Unfortunately, in practical implementations, the rate r appearing in
(81) is not known a priori and must be approximated as part of the RMLMC
and RMLMC-SR estimators. Estimating this rate from RMLMC level infor-
mation is convenient but is subject to statistical variability that increases the
variance and degrades the overall reliability of the resulting RMLMC esti-
mator. A new approach to rate estimation using the RMLMC-SR estimator
with sample reuse reduces or eliminates variability in the rate estimation.
This can significantly enhance the accuracy of the resulting RMLMC-SR es-
timator. This topic is addressed in Sects. 4.1.4 and 4.2.4 for the RMLMC
and RMLMC-SR estimators, respectively.

4.1 Unbiased RMLMC estimation of E[J ] for the ide-
alized model

Motivated by the extrapolation formula (81), an unbiased MLMC estimator
for E[J ] is defined.

Definition 4 (RMLMC Estimator for the Idealized Model) Let
J(u(x, t, ω)) denote a random variable quantity of interest and Jl ≡ J(ul(x, t, ω))
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an idealized quantity of interest model with level-dependent discretization
model

Jl ≡ J(ul(x, t, ω)) = p(x, t, ω) + (γ−l∆0)rq(x, t, ω) , l = 0, . . . , L (82)

with mesh resolution ∆0, enrichment factor γ, rate parameter r, a maximum
level parameter L, and random variable functions p(x, t, ω) and q(x, t, ω) Fur-
ther, let EL[JL] denote the MLMC estimator described in Def. 2. The unbi-
ased RMLMC estimator for the E[J ] statistic is

REL[JL] = EL[JL] +
1

γr − 1
EML

[JL − JL−1] (83)

where EML
[JL − JL−1] is described in Def. 2.

4.1.1 RMLMC expected value for the idealized model

The next lemma verifies that the RMLMC estimator provides an unbiased
estimate of E[J ] for the idealized quantity of interest model.

Lemma 9 (RMLMC Expected Value) Let REL[JL] denote the RMLMC
estimator described in Def.(4). REL[JL] is a random variable with expected
value E[J ],

E[REL[JL]] = E[J ] (84)

Proof: From Lemmas 1 and 3, REL[JL] is the sum of random variables and
therefore is a random variable. Next, calculate the expectation

E
[
REL[JL]

]
= E

[
EL[JL] +

1

γr − 1
EML

[JL − JL−1]

]
(85a)

= E
[
EL[JL]

]
+

1

γr − 1
E [EML

[JL − JL−1]] (85b)

= E[JL] +
1

γr − 1
E[JL − JL−1] (85c)

= E
[
JL +

1

γr − 1
(JL − JL−1)

]
(85d)

= E[J ] (85e)

where (85b) follows from linearity of the expectation functional, (85c) follows
from Lemmas 1 and 3, (85d) again uses linearity of the expectation functional,
and (85e) follows from (80). This verifies the stated lemma. �
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4.1.2 RMLMC mean squared error for E[J ] for the idealized model

The next lemma shows that the mean squared error for the RMLMC esti-
mator differs from the MLMC mean squared error only at the finest level
L.

Lemma 10 (RMLMC Mean Square Error for E[J ]) Let REL[JL] de-
note the RMLMC estimator described in Def. (4). Further, assume that all
models Jl ≡ J(ul(x, t, ω)), l = 0, . . . , L have bounded variance. The unbi-
ased mean squared error for the RMLMC estimator with respect to the E[J ]
statistic is given by

E
[(
E[J ]−REL[JL]

)2
]

=
L−1∑
l=0

Var[Jl − Jl−1]

Ml

+

(
1

1− γ−r

)2 Var[JL − JL−1]

ML

(86)

Proof: Begin by evaluating the mean squared error

E
[
(E[J ]−REL[JL])2

]
= E

[
(REL[JL])2 + E2[J ]− 2E[J ]REL[JL]

]
(87a)

= E
[
(REL[JL])2

]
− E2[J ] (87b)

Expanding the left-hand-side squared terms and application of Lemma 9
yields the right-hand-side (87b). Using the extrapolation formula (81), E2[J ]
in (87b) can be replaced by

E2[J ] = E2[JL] +

(
1

γr − 1

)2

E2[JL − JL−1] +
2

γr − 1
E[JL − JL−1]E[JL] (88)

Next, evaluate the first right-hand-side term in (87b)

E
[
(REL[JL])2

]
= E

[
(EL[JL])2

]
(89a)

+

(
1

γr − 1

)2

E
[
(EML

[JL − JL−1])2
]

(89b)

+
2

γr − 1
E
[
EL[JL]EML

[JL − JL−1]
]

(89c)

Using Lemma 3 and Lemma 4, the first right-hand-side term (89a) reduces
to

E
[
(EL[JL])2

]
=

L∑
l=0

Var[Jl − Jl−1]

Ml

+ E2[JL] (90)
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Similarly, using Lemma 1 and Lemma 2, the second right-hand-side term
(89b) expectation reduces to

E
[
(EML

[JL − JL−1])2
]

=
Var[JL − JL−1]

ML

+ E2[JL − JL−1] (91)

Evaluation of the third right-hand-side term (89c) yields

E
[
EML

[JL − JL−1]EL[JL]
]

= E

[
EML

[JL − JL−1]
L∑
l=0

EMl
[Jl − Jl−1]

]
(92a)

= E
[
E2
ML

[JL − JL−1]
]

(92b)

+ E

EML
[JL − JL−1]

L∑
l=0
l6=L

EMl
[Jl − Jl−1]

(92c)

= E
[
E2
ML

[JL − JL−1]
]

(92d)

+ E[JL − JL−1]
L∑
l=0
l 6=L

E[Jl − Jl−1] (92e)

= E
[
E2
ML

[JL − JL−1]
]
− E2[JL − JL−1] (92f)

+ E[JL − JL−1]
L∑
l=0

E[Jl − Jl−1] (92g)

=
Var[JL − JL−1]

ML

+ E[JL − JL−1]EL[JL] (92h)

The fact that EMl
[Jl − Jl−1] are independent variables for l = 0, . . . , L (as

noted in the proof of Lemma 3) has been used in obtaining (92e). Equation
(91) has been used to obtain (92h). Finally, inserting (90), (91), and (92h)
into (89a)-(89c) and collecting terms yields the stated lemma. �

4.1.3 Calculation of RMLMC parameters for the idealized model

The RMLMC formulation (83) introduces L + 1 undetermined sample size
parameters, {M0,M1, . . . ,ML}, that must be determined. Recall that, as-
suming the idealized model (82), the RMLMC estimator provides an unbiased
estimate of the E[J ] statistic. There is no longer a need to account for an
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approximation error bias that was present in the MLMC estimator. Conse-
quently, when a RMLMC mean squared error (86) of ε2 or less is desired,
this can be accomplished by requiring that

L−1∑
l=0

Vl
Ml

+

(
1

1− γ−r

)2
VL
ML

≤ ε2 (93)

with Vl ≡ Var[Jl−Jl−1]. Following a parameter optimization process similar
to that given in Sect. 2.2.4 for the MLMC estimator, the mean squared error
is minimized subject to a fixed cost (29). For brevity, define

V̂l ≡

Vl for 0 ≤ l < L(
1

1−γ−r

)2

Vl for l = L
(94)

The optimization process yields sample size parameters (rounded to the near-
est integer in implementations)

Ml =

√
V̂l

λL (Cl + Cl−1)
(95)

with λL chosen to satisfy (93)

λL =

 ε2∑L
l′=0

√
V̂l′(Cl′ + Cl′−1)

2

(96)

Using this λL, the RMLMC cost (29) then simplifies to

Cost =
ε2

λL
(97)

Remark 4 Due to the absence of an approximation error bias, there is no
longer an explicit condition for selecting the maximum levels parameter L.
A heuristic requirement, motivated by the approximation error bias condition
(27) from the MLMC estimator, is

E2[J − JL] ≤ ε2

2
(98)
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This additional requirement has no impact on the satisfaction (93), but af-
fects the maximum number of levels and hence the cost (97) of the RMLMC
estimator. The expectation quantity (98) can be estimated using

E[J − JL] ≈ 1

γr − 1
EML

[JL − JL−1] (99)

since from Lemma 1 and (81)

1

γr − 1
E [EML

[JL − JL−1]] = E[J − JL] (100)

Remark 5 Assuming that satisfaction of (27) and (98) results in both the
MLMC and RMLMC estimators choosing the same maximum levels parame-
ter L, the RMLMC estimator exhibits an overall cost savings when compared
to the MLMC estimator. For example, in the limit of increasing rate param-
eter r and identical mean squared error ε2

lim
r→∞

CostRMLMC

CostMLMC

=
1

2

This represents a considerable cost savings.

4.1.4 RMLMC rate estimation

Using the idealized model (82) with given enrichment factor γ, the rate pa-
rameter r can be calculated from

γr =
E[JL−1 − JL−2]

E[JL − JL−1]
(101)

which motivates the approximate rate estimator

γ r̂ =
EML−1

[JL−1 − JL−2]

EML
[JL − JL−1]

(102)

where r̂ approximates the true rate r. Using the approximated rate, the
RMLMC estimator can then be applied to problems that are well-represented
by a discretization error depending on a discretization parameter ∆0 and rate
parameter r, but do not have an explicit idealized model representation. The
RMLMC implementation described in Sect. 4.1.5 uses this rate estimator.
Unfortunately, rates estimated from (102) exhibit statistical variability re-
sulting from the i.i.d. sampling. This degrades the accuracy of the RMLMC
estimator as demonstrated in the numerical examples of Sect. 5. This vari-
ability can be greatly reduced or completely eliminated when sample reuse
(see Sect. 3) is employed as discussed in Sect. 4.2.
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4.1.5 RMLMC implementation

A bootstrap RMLMC implementation starts from a single level L = 0 and
incrementally adds levels until (98) and (93) are satisfied:

1. Initialize parameters, L = 0 and r̂ � 1.0.

2. Estimate Var[JL − JL−1] using a variance estimator given an initial
representative population of samples for JL − JL−1

3. If L > 1, calculate the estimated rate parameter r̂, e.g., γ r̂ =
EML−1

[JL−1−JL−2]

EML
[JL−JL−1]

.

4. Calculate λL in (96) using previously estimated variances,

5. Calculate sample sizes {M0,M1, . . . ,ML} using (95) and enrich level
sample populations using these revised sample sizes,

6. If L > 1, check the approximation error requirement (98), E2[J−JL] ≤
ε2

2
, by checking whether 1

γr̂−1
|EML

[JL − JL−1]| ≤ ε√
2
. If not satisfied,

set L = L+ 1 and go to 2.

4.2 Unbiased RMLMC-SR estimation of E[J ] for the
idealized model

The RMLMC estimator provides unbiased estimates of the E[J ] statistic but
requires an estimate of the rate parameter r. Rate parameter estimates for
the RMLMC estimator that use level data for this estimate suffer from sta-
tistical variability. This reduces accuracy of the estimator. The RMLMC-SR
estimator described below reduces or eliminates this estimated rate vari-
ability by exploiting properties of sample reuse in the MLMC-SR estimator
described in Sect. 3.

Definition 5 (RMLMC-SR Estimator for the Idealized Model) Let
J(u(x, t, ω)) denote a random variable quantity of interest and Jl ≡ J(ul(x, t, ω))
an idealized quantity of interest model with level-dependent discretization
model

Jl ≡ J(ul(x, t, ω)) = p(x, t, ω) + (γ−l∆0)rq(x, t, ω) , l = 0, . . . , L (103)

with mesh resolution ∆0, enrichment factor γ, rate parameter r, a maximum
level parameter L, and random variable functions p(x, t, ω) and q(x, t, ω).
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Further, let EL
l∗ [JL] denote the MLMC-SR estimator described in Def. 3

and assume 0 < l∗ < L. The unbiased RMLMC-SR estimator for the E[J ]
statistic utilizing sample reuse is

REL
l∗ [JL] = EL

l∗ [JL] +
1

γr − 1
E∗ML

[JL − JL−1] (104)

where E∗ML
[JL − JL−1] is described in Def. 3.

4.2.1 RMLMC-SR expected value for the idealized model

The next lemma verifies that the RMLMC-SR estimator provides an unbiased
estimate of E[J ] for the idealized quantity of interest model.

Lemma 11 (RMLMC-SR Expected Value) Let REL
i∗ [JL] denote the

RMLMC-SR estimator described in Def.(5). REL
l∗ [JL] is a random variable

with expected value E[J ],

E[REL
l∗ [JL]] = E[J ] (105)

Proof: The proof follows very closely the proof of Lemma 9 and is unaffected
by sample reuse. �

4.2.2 RMLMC-SR mean squared error for E[J ] for the idealized
model

The next lemma shows that the mean squared error for the RMLMC-SR
estimator differs from the MLMC-SR mean squared error only at the finest
level L.

Lemma 12 (RMLMC-SR Mean Square Error for E[J ]) Let REL
l∗ [JL]

denote the RMLMC-SR estimator described in Def. (5). Further, assume
that all models Jl ≡ J(ul(x, t, ω)), l = 0, . . . , L have bounded variance. The
unbiased mean squared error for the RMLMC-SR estimator with respect to
the E[J ] statistic is given by

E
[(
E[J ]−REL

l∗ [JL]
)2
]

=
L−1∑
l=0

1

Ml

Var[Jl−Jl−1] + 2
L∑

l′=l+1
l≥l∗

Cov[Jl−Jl−1, Jl′−Jl′−1]
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+

(
1

1− γ−r

)
Var[JL − JL−1]

ML

(106)

Proof: The proof follows very closely the proof of Lemma 10 and is omitted.
�

4.2.3 Calculation of RMLMC-SR parameters for the idealized
model

The RMLMC-SR formulation (104) introduces L + 1 undetermined sample
size parameters, {M0,M1, . . . ,ML}, that must be determined. Recall that,
assuming the idealized model (103), the RMLMC-SR estimator provides an
unbiased estimate of the E[J ] statistic. There is no longer a need to account
for an approximation error bias that was present in the MLMC-SR estimator.
Consequently, when a RMLMC-SR mean squared error (106) of ε2 or less is
desired, this can be accomplished by requiring that

L−1∑
l=0

1

Ml

Vl + 2
∑
l′=l+1
l≥l∗

Cl l′

+

(
1

1− γ−r

)2
VL
ML

≤ ε2 (107)

with Vl ≡ Var[Jl − Jl−1] and Cl l′ = Cov[Jl − Jl−1, Jl′ − Jl′−1]. Following
an optimization process similar to that given in Sect. 3.2.2 for the MLMC-
SR estimator, the left-hand-side of (107) is minimized subject to the fixed
RMLMC-SR cost

Cost =
l∗∑
l=0

Ml(Cl + Cl−1) +
L∑

l=l∗+1

Ml Cl (108)

For brevity, define

V̂l ≡

Vl + 2
∑

l′=l+1
l≥l∗

Cl l′ for 0 ≤ l < L(
1

1−γ−r

)2

Vl for l = L
(109)
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The optimization process yields sample size parameters (rounded to the near-
est integer in implementations)

Ml ≈


√

V̂l
λL (Cl+Cl−1)

for 0 ≤ l ≤ l∗

√
V̂l

λL Cl
for l∗ < l ≤ L

(110)

with λL chosen to satisfy (107)

λL =

 ε2∑l∗

l′=0

√
V̂l′(Cl′ + Cl′+1) +

∑L
l′=l∗+1

√
V̂l′Cl′


2

(111)

The RMLMC-SR cost (108) then simplifies to

Cost =
ε2

λL
(112)

Remark 6 Using the same arguments made in Sect. 4.1.3, an explicit con-
dition for selecting the maximum levels parameter L is given by

E2[J − JL] ≤ ε2

2
(113)

This additional requirement has no impact on the satisfaction (107), but af-
fects the maximum number of levels and hence the cost (108) of the RMLMC-
SR estimator. The expectation quantity (113) can be estimated using

E[J − JL] ≈ 1

γr − 1
E∗ML

[JL − JL−1] (114)

Remark 7 Assuming that satisfaction of (62) and (113) results in both the
MLMC-SR and RMLMC-SR estimators choosing the same maximum levels
parameter L, the RMLMC-SR estimator exhibits an overall cost savings when
compared to the MLMC estimator. For example, in the limit of increasing
rate parameter r and identical mean squared error ε2

lim
r→∞

CostRMLMC−SR

CostMLMC−SR
=

1

2

This represents a considerable cost savings.
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4.2.4 RMLMC-SR rate estimation

Sample reuse in the RMLMC-SR estimator with L − l∗ ≥ 2 permits the
construction of two related rate estimators. Lemma 13 then proves that these
rate estimators exactly reproduce the rate r when the idealized quantity of
interest model (103) is assumed. The Type I rate estimator uses level data
from the RMLMC-SR estimator.

Definition 6 (Type I Rate Estimator) Let J(u(x, t, ω)) denote a random
variable quantity of interest, L a maximum levels parameter, and JL a set
containing approximate models of J(u(x, t, ω))

JL = {J0, J1, . . . , JL} , (115)

where the shorthand notation Jl = J(ul(x, t, ω)) has been used. Further, let
REL

l∗ [JL] denote the RMLMC-SR estimator described in Def. 5 with L− l∗ ≥
2. Let r̂ denote an estimated rate parameter for the RMLMC-SR estimator.
The Type I rate estimator for r̂ is

γ r̂ ≡
E∗ML

[JL−1 − JL−2]

E∗ML
[JL − JL−1]

(116)

where E∗ML
[JL − JL−1] is described in Def. 3 and E∗ML

[JL−1 − JL−2] is a
truncation of El∗

ML−1
[JL−1 − JL−2] for ML < ML−1 assumed in Def. 3.

The Type II rate estimator estimates contributions to the rate r̂ on a sample-
by-sample basis.

Definition 7 (Type II Rate Estimator) Let J(u(x, t, ω)) denote a ran-
dom variable quantity of interest, L a maximum levels parameter, and JL a
set containing approximate models of J(u(x, t, ω))

JL = {J0, J1, . . . , JL} , (117)

where the shorthand notation Jl = J(ul(x, t, ω)) has been used. Further, let
REL

l∗ [JL] denote the RMLMC-SR estimator described in Def. 5 with L− l∗ ≥
2. Let r̂ denote an estimated rate parameter for the RMLMC-SR estimator.
The Type II rate estimator for r̂ is

γ r̂ ≡ EML

[
JL−1(ω∗)− JL−2(ω∗)

JL(ω∗)− JL−1(ω∗)

]
=

1

ML

ML∑
i=1

JL−1(ω
(i)
∗ )− JL−2(ω

(i)
∗ )

JL(ω
(i)
∗ )− JL−1(ω

(i)
∗ )

(118)
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The next lemma shows that the Type I and Type II rate estimators result
in an exact (deterministic) rate calculation when the idealized quantity of
interest (103) is assumed.

Lemma 13 (Type I and Type II determistic rate estimation) The
RMLMC-SR Type I and Type II rate estimators described in Def. 6 and Def.
7 yield deterministic rate estimates equal to γr when applied to the idealized
quantity of interest function (103).

Proof: Both rate estimators exploit sample reuse in RMLMC-SR estimation
for L− l∗ ≥ 2. Starting with the Type I estimator

γ r̂ ≡
E∗ML

[JL−1 − JL−2]

E∗ML
[JL − JL−1]

(119a)

=

∑ML

i=1 JL−1(ω
(i)
∗ )− JL−2(ω

(i)
∗ )∑ML

j=1 JL(ω
(j)
∗ )− JL−1(ω

(jb)
∗ )

(119b)

=
γr(1− γr)γ−l r∆r

0
1
ML

∑ML

i=1 q(x, t, ω
(i)
∗ )

(1− γr)γ−l r∆r
0

1
ML

∑ML

j=1 q(x, t, ω
(j)
∗ )

(119c)

= γr (119d)

Inserting the idealized quantity of interest function (103) into (119b) yields
(119c). Exact cancellation of identical random variable sums yields a exact
(deterministic) rate calculation.

The Type II estimator directly exploits sample reuse and the assumed
idealized quantity of interest function (103) on a sample-by-sample basis, i.e,

γr =
JL−1(ω

(i)
∗ )− JL−2(ω

(i)
∗ )

JL(ω
(i)
∗ )− JL−1(ω

(i)
∗ )

, i = 1, . . . ,ML (120)

Inserting into the Type II formula

γ r̂ ≡ 1

ML

ML∑
i=1

JL−1(ω
(i)
∗ )− JL−2(ω

(i)
∗ )

JL(ω
(i)
∗ )− JL−1(ω

(i)
∗ )

(121a)

=
1

ML

ML∑
i=1

γr (121b)

= γr (121c)
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This verifies the stated lemma. �

For general quantity of interest functions, statistical variance in both
Type I and Type II rate estimators is expected. This is examined further in
the numerical results Sect. 5.

4.2.5 RMLMC-SR implementation

The implementation starts from a single level L = 0 and incrementally adds
levels until (113), (107), and L − l∗ ≥ 2 are satisfied. New i.i.d. outcome
event samples are generated if the current level L < l∗. Otherwise, an i.i.d.
event outcome sample reuse set is established when L = l∗ and those event
outcome samples are reused for L ≥ l∗.

1. Initialize parameters, L = 0 and r̂ � 1.0.

2. If L = l∗, establish a event outcome sample reuse population.

3. Estimate Var[JL−JL−1] given an initial population of new i.i.d. samples
if L < l∗ or reused samples if L ≥ l∗

4. Estimate Cov[Jl − Jl−1, JL − JL−1] for l∗ ≤ l < L− 1.

5. If L − l∗ ≥ 2, calculate the estimated rate parameter r̂ using either

Type I or Type II formulas, e.g., γ r̂ =
E∗ML

[JL−1−JL−2]

E∗ML
[JL−JL−1]

.

6. Calculate λL in (111) using previously estimated variances and covari-
ances.

7. Calculate sample sizes {M0,M1, . . . ,ML} using (110) and enrich level
sample populations using these revised sample sizes,

8. If L− l∗ ≥ 2, check the approximation error requirement (113), E2[J −
JL] ≤ ε2

2
, by checking whether 1

γr̂−1
|EML

[JL − JL−1]| ≤ ε√
2
. If not

satisfied, set L = L+ 1 and go to 2.

5 Numerical Examples

Example calculations are presented for random variable quantities of interest
that are the asymptotic limit of approximate quantities of interest described
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by a level parameter. Two multilevel Monte Carlo estimators are then eval-
uated for these problems: the unbiased RMLMC estimator (83) with rate
estimator (102) and the unbiased RMLMC-SR estimator (104) with Type I
rate estimator (116) and sample reuse lower limit l∗ = 1. For both examples,
an enrichment factor of γ = 2 has been used.

The first example problem assumes the idealized quantity of interest form
(5) with 10-dimensional random variable functions. Although a specific value
of the rate parameter r is used in calculating quantity of interest samples,
the RMLMC and RMLMC-SR estimators are unaware of this chosen value
and must estimate the rate from sample data using a rate estimator.

The second example problem utilizes a Gaussian process random field,
W (x, ω), approximated by a truncated 10-term Karhunen-Loève expansion.
The quantity of interest is ‖W 2(·, ω)‖2

2 with discretization error introduced
by replacing the L2 norm integral with a numerical quadrature. The dis-
cretization error for this quantity of interest decreases at a second order rate
when the number of quadrature points is doubled between successive levels
of the model. The RMLMC and RMLMC-SR estimators are unaware of this
second order rate and must estimate the rate from the sample data using a
rate estimator.

For each example, the following comparisons are made

1. Cost of the RMLMC and RMLMC-SR estimators (and others).

2. Variance of the RMLMC and RMLMC-SR estimated rate r̂. Com-
parison results, presented next, show degraded performance when the
estimated rates have significant variance.

3. Variance of the RMLMC and RMLMC-SR approximation error bias
estimators, 1

2r̂−1
EML

[JL− JL−1] and 1
2r̂−1

E∗ML
[JL− JL−1], with r̂ calcu-

lated using a rate estimator. The expected value of these estimators is
the expected approximation error bias, i.e., for the RMLMC approxi-
mation error bias estimator

E[J − JL] = E
[

1

2r̂ − 1
EML

[JL − JL−1]

]
(122)

This result comes from rearrangement the RMLMC estimator

REL[JL]− EL[JL] =
1

2r − 1
EML

[JL − JL−1] (123)
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and application of Lemmas 9 and 11

E[REL[JL]−EL[JL]] = E[J−JL] = E
[

1

2r − 1
EML

[JL − JL−1]

]
(124)

Similar results are obtained for the RMLMC-SR estimator. In RMLMC
and RLMLC-SR implementations, the rate r in (124) is replaced by a
rate estimator value r̂ which can significantly affect the the variance in
the approximation error bias estimators.

4. Variance of the RMLMC and RMLMC-SR estimators.

5.1 Example 1

This example assumes the following idealized quantity of interest

Jl ≡ J(ω; ∆0, r, l, L, a,N) = p(ω; a,N) + Cdisc (2−l∆0)rq(ω; a,N) (125)

with mesh resolution ∆0, rate parameter r, level parameter l, maximum level
parameter L, numerical discretization scaling constant Cdisc, and random
variable functions

p(ω; a,N) =
N∏
i=1

(
a sin2(πωi) + 1− a

2

)
(126)

and

q(ω; a,N) =
N∏
i=1

(
a cos2(πωi) + 1− a

2

)
(127)

with variance parameter a and number of random variable dimensions N .
The event outcome ω is an N -tuple, [ω1, . . . , ωN ], with each ωi uniformly
distributed in the interval [0, 1]. Both random functions have unit expected
value

E[p] = E[q] = 1 (128)

and variance

Var[p] = Var[q] =

(
1 +

a2

8

)N
− 1 (129)

For a given number of random variable dimensions N , choosing a variance
for p determines the value a and similarly for q. In the example calculations,
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Figure 1: Example 1 comparison of ε2Cost versus mean squared errors ε for
the MC, MLMC, RMLMC, RMLMC-SR estimators. Shown are calculations
for the output quantity of interest (125) with specified rates r = 1.5 (left)
and r = 2 (right)

Var[p] = 1
4

and Var[q] = 1
4

have been chosen. Finally, choosing a level of dis-
cretization error, Cdisc = 1

10
, and the number of random variable dimensions,

N = 10, completes the model description.
Figure 1 compares the total cost (scaled by mean squared error ε2) asso-

ciated with the MLMC, RMLMC, and RMLMC-SR estimators for 3 values
of the root mean squared error corresponding to levels L = 3, 4, and 5 in
the multilevel methods. For reference, a theoretical curve is also shown for
the single level Monte Carlo estimator. Calculations shown in Figure 1 use
quantity of interest samples with specified discretization rate parameter val-
ues of r = 3

2
(left figure) and r = 2 (right figure). These graphs show the

enormous cost benefit of the MLMC, RMLMC, and RMLMC-SR multilevel
estimators when compared to the single level Monte Carlo estimator. These
graphs also show a small increase in cost for the RMLMC-SR estimator when
compared to the RMLMC estimator due to sample reuse and a significant
overall decrease in cost when compared to the MLMC estimator. This latter
decrease can be attributed to the absence of an approximation error bias
contribution in the RMLMC and RMLMC-SR sample size calculation. This
can be further understood by comparing Eqns. (28) and (93).

The graphs shown in Fig. 2 compare variances of the RMLMC and
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RMLMC-SR estimated rates r̂. These graphs show a significant reduction in
the RMLMC-SR rate estimator variance when compared to the RMLMC rate
estimator. This improvement is completely expected since the RMLMC-SR

Figure 2: Example 1 comparison of Var[r̂] versus mean squared errors ε
using the RMLMC estimator with rate estimator (102) and the RMLMC-SR
estimator with rate estimator (116), respectively. Shown are calculations for
the output quantity of interest (125) with specified rates r = 1.5 (left) and
r = 2 (right)

estimator and rate estimator formula were tailored to this form of idealized
quantity of interest.

The Fig. 3 graphs compare variances in the RMLMC and RMLMC-SR
approximation error bias estimators, 1

2r̂−1
EML

[JL− JL−1] and 1
2r̂−1

E∗ML
[JL−

JL−1]. The expected value of these estimators is the expected approximation
error bias, E[J−JL]. The graphs show a significant reduction in the variance
of the RMLMC-SR approximation error bias estimator when compared to
the RMLMC estimator. This can be directly attributed to the low variance
RMLMC-SR rate estimation seen in Fig. 2.

Figure 4 compares the RMLMC and RMLMC-SR estimator variances.
The graphs show some small overall reduction in variance of the RMLMC-SR
estimator when compared to the RMLMC estimator. Further examination
reveals that the amount of reduction decreases with decreasing root mean
squared error ε. The RMLMC-SR estimator variance reduction is substan-
tially less than variance reduction observed for the approximation error bias
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Figure 3: Example 1 comparison of Var[ 1
2r̂−1

EML
[JL − JL−1]] and

Var[ 1
2r̂−1

E∗ML
[JL − JL−1]] versus mean squared errors ε using the RMLMC

estimator with rate estimator (102) and the RMLMC-SR estimator with rate
estimator (116), respectively. Shown are calculations for the output quantity
of interest (125) with specified rates r = 1.5 (left) and r = 2 (right)

estimator shown in Fig. 3. These observations are expected, since for the
RMLMC-SR estimator (similarly for the RMLMC estimator)

REL
l∗ [JL] = EL

l∗ [JL] +
1

2r̂ − 1
El∗

ML
[JL − JL−1]︸ ︷︷ ︸

approximation error bias

(130)

so the contribution of an improved rate estimate r̂ is confined to the right-
hand-side correction term, which is small because the approximation error
bias is small and gets smaller with increasing r̂.

5.2 Example 2

This example utilizes a truncated Karhunen-Loève (KL) expansion that rep-
resents a Gaussian process random field with covariance function

KX(x1, x2) = e−|x1−x2|/b (131)
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Figure 4: Example 1 comparison of Var[REL[JL]] and Var[REL
l∗ [JL]] ver-

sus mean squared errors ε using the RMLMC estimator with rate estimator
(102) and the RMLMC-SR estimator with rate estimator (116), respectively.
Shown are calculations for the output quantity of interest (125) with specified
rates r = 1.5 (left) and r = 2 (right)

where b is a correlation length. The KL expansion takes the following form
(see Ghamen and Spanos [4] for details)

W (x, ω) =
∞∑
n=1

(
Zn(ω)

√
λnfn(x) + Z∗n(ω)

√
λ∗nf

∗
n(x)

)
(132)

where (λn, fn(x)) and (λ∗n, f
∗
n(x)) are eigenpairs associated with the integral

equation ∫ a

−a
KX(x1, x2)fn(x1) d x1 = λnfn(x2) (133)

A Gaussian process is simulated by choosing statistically independent ran-
dom variables Zn and Z∗n with joint Gaussian distribution and unit variance.
For convenience, let c = 1/b. For the specific choice of covariance function
(131), the KL expansion eigenvalues

λn =
2c

ξ2
n + c2

, λ∗n =
2c

ξ∗n
2 + c2

, n = 1, . . . , N (134)

and the eigenfunctions

fn(x) =
cos(ξnx)√
a+ sin(2ξna)

2ξn

, f ∗n(x) =
sin(ξ∗nx)√
a− sin(2ξ∗na)

2ξ∗n

, n = 1, . . . , N (135)
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with ξn and ξ∗n solutions of the transcendental equations

c− ξ tan(ξa) = 0 and ξ∗ + c tan(ξ∗a) = 0 (136)

can be readily derived and computed [4].
The output quantity of interest chosen for this example is

J(ω;K) = ‖W 2(·, ω;K)‖2
L2([−a,a]) =

∫ a

−a
W 2(x, ω;K) d x (137)

where W (x, ω;K) denotes a K-term truncation of (132). For this output
quantity of interest, the exact expected value is known from the KL theory

E[J(ω;K)] =
K∑
n=1

λn + λ∗n (138)

Choosing K = 5 yields 10 random variable dimensions. A numerical dis-
cretization error is then introduced by replacing the integration in (137) with
a Q-point numerical quadrature using a second order accurate midpoint rule.
This results in the level-dependent final form

Jl(ω;K) =

Q∑
q=1

wqW
2(xq, ω;K) , Q ≡ Q02l (139)

where wq and xq denote quadrature point weights and locations. Finally,
choosing a = 1

2
, b = 5

100
, and Q0 = 10 completes a definition of the model.

The graphs shown in Fig. 5 compare ε2Cost (left) and variance of the
estimated rate, Var[r̂], (right) using the RMLMC estimator with rate estima-
tor (102) and the RMLMC-SR estimator with rate estimator (116). Observe
that the abscissa values of root mean squared error in this example are sig-
nificantly smaller than those in Example 1. The cost comparisons in Fig. 5
(left) show insignificant cost differences between the RMLMC and RMLMC-
SR estimators. This is due to small covariance contributions across all levels
in the estimator for the (139) quantity of interest. Note that the RMLMC-SR
rate estimator (116) is no longer exact given the sample data for this prob-
lem. Even so, the rate estimator variance shown in Fig. 5 (right) again shows
a significant reduction in variance using the RMLMC-SR rate estimator.

The graphs shown in Fig. 6 compare approximation error bias estimator
variances, Var[ 1

2r̂−1
EML

[JL − JL−1]] and Var[ 1
2r̂−1

E∗ML
[JL − JL−1]], (left) as
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Figure 5: Example 2 comparison of ε2Cost versus mean squared errors ε (left)
and Var[r̂] versus mean squared errors (right) using the RMLMC estimator
with rate estimator (102) and the RMLMC-SR estimator with rate estimator
(116), respectively.

Figure 6: Example 2 comparison of Var[ 1
2r̂−1

EML
[JL − JL−1]] and

Var[ 1
2r̂−1

E∗ML
[JL − JL−1]] versus mean squared errors ε (left) as well as

Var[REL[JL]] and Var[REL
l∗ [JL]] versus mean squared errors ε (right) us-

ing the RMLMC estimator with rate estimator (102) and the RMLMC-SR
estimator with rate estimator (116), respectively.
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well as estimator variances, Var[REL[JL]] and Var[REL
l∗ [JL]], (right) corre-

sponding to the RMLMC and RMLMC-SR estimators. Recall from (124)
that E[ 1

2r̂−1
EML

[JL − JL−1]] and E[ 1
2r̂−1

E∗ML
[JL − JL−1]] with estimated rate

r̂ are estimates of the expected approximation error bias, E[J − JL]. The
substantial reduction in variance using the RMLMC-SR estimator again im-
plies that accurate estimates of E[J ] − E[JL] can be obtained using fewer
RMLMC-SR evaluations when compared to the RMLMC estimator. The
graphs of estimator variance in Fig. 6 (right) show some small reduction in
variance for larger values of the root mean squared error ε for the RMLMC-SR
estimator when compared to the RMLMC estimator. This is again expected,
using the same argument given in Example 1.

6 Summary

A modified form of the multilevel Monte Carlo estimator has been presented
for the estimation of expectation statistics that utilizes sample reuse in spec-
ified levels, explicitly removes approximation error bias associated with nu-
merically computed output quantities of interest that have an asymptotic
limit behavior, and provides a low variance estimate of the asymptotic rate
of convergence to that limit.

Numerical calculations demonstrate that the modified estimator is more
cost efficient than the standard multilevel Monte Carlo estimator and is ap-
plicable to quantities of interest that have no explicit idealized quantity of
interest form (5).
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